Hypermethylation and loss of expression of glutathione peroxidase-3 in Barrett's tumorigenesis.
نویسندگان
چکیده
Chronic gastroesophageal reflux disease is a known risk factor for Barrett's esophagus (BE), which induces oxidative mucosal damage. Glutathione peroxidase-3 (GPx3) is a secretory protein with potent extracellular antioxidant activity. In this study, we have investigated the mRNA and protein expression of GPx3, and explored promoter hypermethylation as an epigenetic mechanism for GPx3 gene inactivation during Barrett's carcinogenesis. Quantitative real-time reverse transcription polymerase chain reaction on 42 Barrett's adenocarcinomas (BAs) revealed consistently reduced levels of GPx3 mRNA in 91% of tumor samples. GPx3 promoter hypermethylation was detected in 62% of Barrett's metaplasia, 82% of dysplasia, and 88% of BA samples. Hypermethylation of both alleles of GPx3 was most frequently seen in BAs (P = .001). Immunohistochemical staining of GPx3 in matching tissue sections (normal, BE, Barrett's dysplasia, and BA) revealed strong immunostaining for GPx3 in normal esophageal and gastric tissues. However, weak to absent GPx3 staining was observed in Barrett's dysplasia and adenocarcinoma samples where the promoter was hypermethylated. The degree of loss of immunohistochemistry correlated with the hypermethylation pattern (monoallelic versus biallelic). The observed high frequency of promoter hypermethylation and progressive loss of GPx3 expression in BA and its associated lesions, together with its known function as a potent antioxidant, suggest that epigenetic inactivation and regulation of glutathione pathway may be critical in the development and progression of BE.
منابع مشابه
Glutathione Peroxidase 7 Suppresses Bile Salt-Induced Expression of Pro-Inflammatory Cytokines in Barrett's Carcinogenesis
Esophageal adenocarcinoma (EAC) is the most frequent malignancy in the esophagus in the US and its incidence has been rising rapidly in the past few decades. Chronic gastroesophageal reflux disease (GERD), where the esophageal epithelium is abnormally exposed to acid and bile salts, is a pro-inflammatory condition that is the main risk factor for the development of Barrett's esophagus (BE) and ...
متن کاملSilencing of Glutathione Peroxidase 3 through DNA Hypermethylation Is Associated with Lymph Node Metastasis in Gastric Carcinomas
Gastric cancer remains the second leading cause of cancer-related death in the world. H. pylori infection, a major risk factor for gastric cancer, generates high levels of reactive oxygen species (ROS). Glutathione peroxidase 3 (GPX3), a plasma GPX member and a major scavenger of ROS, catalyzes the reduction of hydrogen peroxide and lipid peroxides by reduced glutathione. To study the expressio...
متن کاملEffect of Myomectomy on Endometrial Glutathione Peroxidase 3 (GPx3) and Glycodelin mRNA Expression at the Time of the Implantation Window
Background: In fertile women, glycodelin and glutathione peroxidase 3 (GPx3) genes expression rises during the luteal phase, with a peak occurring during the implantation window. The expression of these genes decreases in women with myomas. To determine whether myomectomy would reverse glycodelin and GPx3 expression, we evaluated the transcript levels of these genes in the endometrium of patien...
متن کاملPrognostic significance of glutathione peroxidase 1 (GPX1) down-regulation and correlation with aberrant promoter methylation in human gastric cancer.
BACKGROUND This study aimed at examining the association of gene silencing and promoter methylation of glutathione peroxidase 1 (GPX1) and glutathione peroxidase 3 (GPX3) in gastric cancer cells and determined the clinical significance of GPX1 and GPX3 expression loss in gastric cancer tissue. MATERIALS AND METHODS Analysis of mRNA expression was carried out by reverse transcription-polymeras...
متن کاملPromoter Hypermethylation and Suppression of Glutathione Peroxidase 3 Are Associated with Inflammatory Breast Carcinogenesis
Reactive oxygen species (ROS) play a crucial role in breast cancer initiation, promotion, and progression. Inhibition of antioxidant enzymes that remove ROS was found to accelerate cancer growth. Studies showed that inhibition of glutathione peroxidase-3 (GPX3) was associated with cancer progression. Although the role of GPX3 has been studied in different cancer types, its role in breast cancer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neoplasia
دوره 7 9 شماره
صفحات -
تاریخ انتشار 2005